Pilih silabus pada checkbox atau tulis pada form Body jika ada silabus yang ingin ditambahkan


Silabus

Introduction, learning theory, supervised learning, unsupervised learning
Linear classifiers, separability, perceptron algorithm (single layer perceptron), logistic regression
Training objectives, over-fitting, regularization
Clustering, k-means, Self Organized Map
Non-linear classification, kernels, support vector machine
Ensembles, boosting
Neural networks, multi layer perceptron, backpropagation
Deep learning (Auto encoder, Neural Networks, Neural Networks)
Mixtures and the EM algorithm
Representation of probability models: Bayesian networks
Hidden Markov Models: modeling, algorithm


Pilih durasi video dan tanggal publikasi video (opsional)

Pilih durasi video:






Tanggal publikasi (menampilkan video sebelum tanggal publikasi):