Pilih silabus pada checkbox atau tulis pada form Body jika ada silabus yang ingin ditambahkan


Silabus

Probability Models and Axioms Conditioning and Bayes' Rule Independence.
Discrete Random Variables: Probability Mass Functions, Expectations, Discrete Random Variable Examples, Joint PMFs.
Continuous Random Variables: Multiple Continuous Random Variables, Continuous Bayes' Rule.
Derived Distributions; Convolution; Covariance and Correlation.
Iterated Expectations; Sum of a Random Number of Random Variables.
Bernoulli Process.
Poisson Process.
Markov Chains.
Weak Law of Large Numbers.
Central Limit Theorem.
Bayesian Statistical Inference.
Classical Inference.


Pilih durasi video dan tanggal publikasi video (opsional)

Pilih durasi video:






Tanggal publikasi (menampilkan video sebelum tanggal publikasi):